
2023 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 17–20, 2023, ROME, ITALY

ACCELERATED ALGORITHMS FOR NONLINEAR MATRIX DECOMPOSITION
WITH THE RELU FUNCTION

Giovanni Seraghiti†, Atharva Awari‡, Arnaud Vandaele‡, Margherita Porcelli†, Nicolas Gillis‡

† University of Bologna, Piazza di Porta San Donato 5, 40126 Bologna, Italy
‡ University of Mons, Rue de Houdain 9, 7000 Mons, Belgium

ABSTRACT

In this paper, we study the following nonlinear matrix decom-
position (NMD) problem: given a sparse nonnegative ma-
trix X , find a low-rank matrix Θ such that X ≈ f(Θ), where
f is an element-wise nonlinear function. We focus on the case
where f(·) = max(0, ·), the rectified linear unit (ReLU) non-
linear activation. We refer to the corresponding problem as
ReLU-NMD. We first provide a brief overview of the existing
approaches that were developed to tackle ReLU-NMD. Then
we introduce two new algorithms: (1) aggressive accelerated
NMD (A-NMD) which uses an adaptive Nesterov extrapola-
tion to accelerate an existing algorithm, and (2) three-block
NMD (3B-NMD) which parametrizes Θ = WH and leads
to a significant reduction in the computational cost. We also
propose an effective initialization strategy based on the nu-
clear norm as a proxy for the rank function. We illustrate
the effectiveness of the proposed algorithms on synthetic and
real-world data sets.

Index Terms— low-rank matrix factorization, non-
linearity, extrapolation, alternating minimization, nuclear
norm.

1. INTRODUCTION

Low-rank matrix approximations are widely used in many
fields such as data analysis and machine learning. When
dealing with a large amount of data, stored in a matrix X ,
performing dimensionality reduction by approximating X by
a low-rank matrix is frequent in applications such as data
compression, interpretation, and visualization. In general,
one wants to find a low-rank matrix Θ such that X ≈ Θ.
Some well-known examples of this type of approximation
are the truncated singular value decomposition (TSVD) [1],
and nonnegative matrix factorization (NMF) [2]. In this con-
text, there has been a recent emergence of nonlinear matrix
decomposition (NMD), via its close connection with neural
networks [3]. NMD looks for a low-rank matrix Θ such that

NG acknowledges the support by the F.R.S.-FNRS and the FWO (EOS
no O005318F-RG47), by the ERC (grant no 101085607), by the the F.R.S.-
FNRS under the PDR project T.0097.22, and by the Francqui Foundation.

X ≈ f(Θ), where f is an elementwise nonlinear function; of
particular interest is the case where f is the ReLU function,
that is, f(·) = max(0, ·), which is often used as an activation
function in hidden layers of neural networks.

The NMD problem we consider in this paper is the fol-
lowing: Given X ∈ Rm×n and r < min(m,n), solve

min
Θ∈Rm×n

∥X −max(0,Θ)∥2F such that rank(Θ) = r. (1)

We will refer to this problem as ReLU-NMD. ReLU-NMD
makes sense only if X is nonnegative, since max(0,Θ) ≥ 0.
Moreover, X should be relatively sparse for ReLU-NMD to
provide advantages compares to the TSVD: if X has mostly
positive entries, the solution of ReLU-NMD will be similar to
that of the TSVD, since Θ will need to contain mostly positive
entries. For example, Saul showed that the identity matrix of
any dimension can be exactly recovered with a rank-3 ReLU-
NMD [3]. The reason is that max(0,Θ) can be full rank al-
though Θ has low rank; see Section 5 for other examples.

The objective function in (1) is neither differentiable nor
convex, and the nonlinearity arising from the ReLU function
makes the problem difficult to solve using a direct approach.
ReLU-NMD has been recently investigated by Saul [3],
where he introduced another formulation for ReLU-NMD
as the following latent variable model:

min
Z,Θ
∥Z −Θ∥2F such that

{
rank(Θ) = r,

max(0, Z) = X.
(2)

The main advantage of this new formulation is that the ad-
ditional latent variable Z allows one to move the nonlinear-
ity from the objective function to the constraints, opening the
possibility of exploring new solution strategies.

In [3], Saul presents two algorithms to solve (2): a naive
algorithm, and an Expectation-Maximization (EM) algo-
rithm. In a nutshell, they are both alternating minimization
algorithms with respect to the two variables Z and Θ, and rely
at each iteration on the computation of a rank-r TSVD of an
m-by-n matrix; see Section 2 for more details. Furthermore,
in [4], Saul uses a momentum acceleration step with fixed
extrapolation parameter to accelerate the convergence of the
algorithms.

979-8-3503-2411-2/23/$31.00 ©2023 IEEE

Outline and contribution In this paper, we provide new
effective algorithms for ReLU-NMD. In Section 2, we sum-
marize the previous works on this problem, mostly that of
Saul. In Section 3, we first include an adaptive momentum
parameter estimation in the naive algorithm of Saul with the
aim of optimally self-tuning the parameter along the itera-
tions. Then we introduce the three-block NMD (3B-NMD)
algorithm, which exploits the parametrization Θ = WH , and
then uses an accelerated block coordinate method to update
W , H and Z. The main advantages of 3B-NMD is that it
avoids the computation of a rank-r TSVD at each iteration by
solving instead least squares problems, reducing the compu-
tational cost from O(mnr2) to O(mnr) operations. In Sec-
tion 4, we explain how the nuclear norm can be used to pro-
vide a good initialization to ReLU-NMD. Finally, we illus-
trate on synthetic and real-world data sets the effectiveness of
the proposed algorithms compared to the state of the art in
Section 5.

2. PREVIOUS ALGORITHMS BY SAUL

In this section, we briefly recall the two main algorithms pro-
posed by Saul; the first one will be the starting point of our
newly proposed algorithms in Section 3.

Naive algorithm and extrapolation A simple algorithm to
tackle the reformulation (2) is alternating optimization [3].
Let I+ = {(i, j) | Xij > 0} and I0 = {(i, j) | Xij = 0}.
At each iteration, Z and Θ are computed alternatively: the
optimal solution for Z, when Θ is fixed, is given by

Zij =

{
Xij if (i, j) ∈ I+,

min(0,Θij) if (i, j) ∈ I0.
(3)

The optimal solution for Θ when Z is fixed is the rank-r
TSVD of Z. We will refer to this algorithm as Naive.

In [4], Saul accelerates the above simple scheme by an
additional momentum term on the update of Z with fixed mo-
mentum parameter [5]. Denoting by Zk+1, the k+1-th iterate,
after Zk+1 is computed, it is updated as

Zk+1 ← Zk+1 + α(Zk − Zk−1), (4)

where α ∈ (0, 1) and it the experiments we set α = 0.7. We
will refer to the accelerated Naive algorithm as A-Naive.

Expectation-Maximization (EM-NMD) In [3], Saul pro-
poses a second more sophisticated EM algorithm, where the
matrix Θ parameterizes the following Gaussian latent vari-
able model for the data X: for all i, j, Z̃ij ∼ N (Θij , σ

2). It
is assumed that the observation, Z, is a sample of Z̃, and the
matrix X is obtained from the elementwise nonlinear map-
ping of Z: X = max(0, Z). The model is then estimated
by maximizing the likelihood of the observation X in terms

of the matrix Θ and variance σ2. The overall log-likelihood
under this model is given by

logP (X|Θ, σ2) = Σij logP (Xij |Θij , σ
2). (5)

The parameters Θ and σ2 are estimated by maximizing this
sum. To do this, EM is used: it alternates between two steps:
the E-step computes the posterior means and variances of the
model latent variables, and the M-step uses these posterior
statistics to re-estimate the model parameters. These steps
are rather technical, and we refer the interested reader to [3]
for more details. Note that the M-step requires the computa-
tion of a rank-r TSVD, as in the naive approach, and hence
requires O(mnr2) operations. In [4] a momentum step as in
(4) is added to the algorithm, we will refer to it as A-EM.

3. TWO NEW ALGORITHMS FOR RELU-NMD

Let us present our two new algorithms for ReLU-NMD.

3.1. Aggressive momentum algorithm (A-NMD)

In the naive algorithm, Saul used a Polyak-type extrapolation
with a fixed momentum parameter and only extrapolated the
variable Z; see Section 2. Here we adopt a more aggressive
Nesterov-type extrapolation with a heuristic approach to tune
this parameter, as we set

Zk+1 ← Zk+1 + βk(Z
k+1 − Zk), (6)

where βk is chosen adaptively. Also note that we use extrap-
olation for both variables, Z and Θ. The adaptive choice of
the momentum parameter allows the algorithm to be less sen-
sitive to that parameter, and adapt depending on the problem
at hand. To do so, we follow the scheme in [6] where it was
used for NMF. In that scheme, the momentum parameter, βk

at iteration k, is updated based on the decrease/increase of
the objective function as follows. Fix the hyperparameters
1 < γ̄ < γ < η. The momentum parameter is multiplied
by γ as long as the objective function is decreasing, unless it
reaches the adaptive upper bound β̄. If the objective function
decreases, we set β̄ = min(1, γ̄β̄), meaning that we increase
β̄ by a factor γ̄ < γ. On the contrary, if at iteration k the error
increases, the momentum parameter is divided by the factor
η and we update the upper bound β̄ as βk−1, meaning that β̄
keeps track of the latest value of β that allowed the decrease of
the objective function. Algorithm 1 summarizes this strategy
which we refer to as A-NMD. In the numerical experiments,
we will use the parameters γ̄ = 1.05 < γ = 1.1 < η = 2.5.

3.2. Three-block NMD algorithm (3B-NMD)

All the previously described algorithms require the computa-
tion of a rank-r TSVD at each step. To avoid this relatively
expensive step, we substitute Θ ∈ Rm×n by the product WH ,

Algorithm 1 Aggressive momentum NMD (A-NMD)
Input: X , Z0, Θ0, r, 1 < γ̄ < γ < η, β0 ∈ (0, 1), maxit.
Output: A rank-r matrix Θ s.t. X ≈ max(0,Θ).

1: Set β̄ = 1, Zk
ij = Xij for (i, j) ∈ I+ and for k = 0, 1.

2: for k = 0, 1, . . . , maxit do
3: Zk+1

ij = min(0,Θk
ij) for (i, j) ∈ I0.

4: Zk+1 ← Zk+1 + βk(Z
k+1 − Zk).

5: [U,D, V] = TSVD(Zk+1, r).
6: Θk+1 = UDV T .
7: Θk+1 ← Θk+1 + βk(Θ

k+1 −Θk).
8: if ∥X−max(0,Θk+1)∥F<∥X−max(0,Θk)∥F then
9: βk+1 = min(β̄, γβk), β̄ = min(1, γ̄β̄).

10: else
11: βk+1 = βk\η, β̄ = βk−1,
12: Zk+1 = Zk, Θk+1 = Θk.
13: end if
14: end for
15: Θ = Θk+1.

where W ∈ Rm×r and H ∈ Rr×n. Hence we reformulate (2)
as follows

min
Z,W,H

∥Z −WH∥2F such that max(0, Z) = X.

As for Θ, the minimization subproblems for W and H have
closed-form solutions; in fact, they can be obtained simply by
solving matrix least square problems which require O(mnr)
operations, instead of the O(mnr2) operations for the TSVD.
To accelerate this block-coordinate descent method scheme,
we also use extrapolation, after the computation of Z and of
Θ = WH; see Algorithm 2 (3B-NMD).

Algorithm 2 Momentum three-block NDM (3B-NMD)
Input: X , Z0, W 0, H0,r, β, maxit.
Output: Two matrices W and H s.t. X ≈ max(0,WH).

1: Set Zk
ij = Xij for (i, j) ∈ I+ and k = 0, 1.

2: for k = 0, 1, . . . , maxit do
3: Zk+1

ij = min(0,Θk
ij) for (i, j) ∈ I0.

4: Zk+1 ← Zk+1 + β(Zk+1 − Zk).
5: W k+1 ← argminW ∥Zk+1 −WHk∥2F .
6: Hk+1 ← argminH∥Zk+1 −W k+1H∥2F .
7: Θk+1 ←W k+1Hk+1

8: Θk+1 ← Θk+1 + β(Θk+1 −Θk).
9: end for

10: W = W k+1, H = Hk+1.

Note that 3B-NMD does not use an adaptive strategy for
the momentum parameter β, because we have observed it is
not as effective as in the naive case described in the previous
section. This is a topic for further research. In the numerical
experiments, we will use β = 0.7 which performs well in
practice.

4. INITIALIZATION WITH THE NUCLEAR NORM

In this section, we provide an initialization strategy for Θ us-
ing the nuclear norm. The nuclear norm of a matrix X is the
sum of its singular values, and is denoted ∥X∥∗ =

∑
i σi(X).

The nuclear norm has been used as a convex surrogate of the
rank function, akin to the ℓ1 norm used as a convex surrogate
for the ℓ0 norm; see [7] and the references therein.

Assuming there exists an exact rank-r ReLU-NMD but
we do not know the rank r, the rank identification problem
can be reformulated as follows:

min
Θ

rank(Θ) such that X = max(0,Θ), (7)

which is a hard problem in general. Replacing the rank with
the nuclear norm, we obtain the following convex relaxation:

min
Θ
∥Θ∥∗ such that Θij = Xij for (i, j) ∈ I+,

Θij ≤ 0 for (i, j) ∈ I0. (8)

We are looking for Θ that matches the positive entries of X
while having the smallest possible nuclear norm, and hence,
hopefully, a small rank. To solve (8), we resort to a standard
projected subgradient strategy [7], updating Θ as follows

Θk+1 = Π(Θk − αkYk), Yk ∈ ∂∥Θk∥∗,

where Π(·) is the projection onto the feasible set (which is
easy to compute), and ∂∥Θk∥∗ is a subgradient of the nuclear
norm at Θk, given by [8]

∂∥Θ∥∗ =
{
UV T + P : P and Θ have orthogonal row

and column spaces, and ∥P∥ ≤ 1
}
, (9)

where (U,Σ, V) ∈ Rm×r × Rr×r × Rn×r is a TSVD of Θ
and ∥.∥ is the operator norm (or induced 2-norm) of a matrix.
In our implementation, we used P = 0.

There are several possibilities for the choice of the step-
sizes αk. A standard choice that guarantees convergence is to
use a diminishing stepsize. However, we prefer to use a more
aggressive backtracking approach, since we only needed to
perform a few iterations of the subgradient algorithm as it
was sufficient to obtain a significant decrease in the nuclear
norm. Also, the solution is only used for initialization and
hence we do not need high accuracy. Moreover, the solution
of (8) is not guaranteed to be of rank smaller than r, and hence
we use the rank-r TSVD of the last iterate as an initializa-
tion for the ReLU-NMD algorithms presented in the previous
sections. Note that it would be however rather interesting to
explore conditions under which the solution of (8) recovers
that of (7), similarly as done in the affine rank minimization
literature [7].

5. NUMERICAL EXPERIMENTS

We compare the following algorithms for ReLU-NMD:
A-NMD (Algorithm 1), 3B-NMD (Algorithm 2), Naive-
NMD, A-Naive-NMD, EM-NMD and A-EM by1 Saul [3]
(see Section 2). As a baseline, we will also report the re-
sult of the projection of the TSVD, that is, max(0, Xr)
where Xr is the rank-r TSVD of X . All tests are pre-
formed using Matlab R2021b on a laptop Intel CORE i5-
1135G7 @ 2.40GHz 8GB RAM. In the following, we per-
form experiments on synthetic data sets, and the MNIST
and CBCL data sets. The code is available online from
https://gitlab.com/ngillis/ReLU-NMD.

5.1. Synthetic data

The matrix X ∈ Rm×n is generated as X = max(0,WH),
where the entries of W ∈ Rm×r and H ∈ Rr×n are generated
from the normal distribution, that is, W = randn(m,r) and
H = randn(r,n) in MATLAB. Since the probability for
X to have a positive entry is equal to that of having a negative
entry (by symmetry), X has, on average, 50% of its entries
equal to zero. All algorithms are stopped when

relative error =
∥X −max(0,Θ)∥F

∥X∥F
≤ 10−4, (10)

where Θ is the current solution. Note that, given the non-
convexity of ReLU-NMD, there is no guarantee that an algo-
rithm converges to such a small relative error. However, for
the synthetic data as generated above, this is always the case.
It would be interesting to explain this behavior, e.g., maybe
there are no spurious local minima with high probability, as
for other non-convex problems [9].

Initialization Let us first validate the effectiveness of the
nuclear norm initialization. To do so, we compare:
• Random initialization where Θ is a rank-r matrix, gener-
ated in the same way as X , and which we scale optimally as
follows Θ← α∗Θ where

α∗ = argminα ∥X − α max(0,Θ)∥F =
⟨X,max(0,Θ)⟩
∥max(0,Θ)∥2F

.

• The initialization Θ taken as the rank-r TSVD of X .
• The nuclear norm minimization strategy; see Section 4.
We perform 3 iterations of the projected subgradient method
(which we observe is a good tradeoff between computational
cost and reduction in the error). We initialize the nuclear norm
approach using the random initialization and optimal scaling
as described above.

Table 1 reports the relative errors of all three initializa-
tions for two values of r, with m = n = 500, 1000, 1500, 2000.
We observe that the nuclear norm allows an initial solution

1We thank Lawrence Saul for providing us with his MATLAB codes.

r = 8 r = 16
m = n rand TSVD ∥.∥∗ rand TSVD ∥.∥∗
500 0.95 0.40 0.36 0.95 0.36 0.32
1000 0.95 0.41 0.38 0.95 0.37 0.33
1500 0.95 0.41 0.38 0.95 0.38 0.33
2000 0.95 0.41 0.38 0.95 0.38 0.33

Table 1. Initial relative error of three initializations: random
initialization and scaling, the rank-r TSVD, and the nuclear
norm initialization described in Section 4 (∥.∥∗).

with significantly smaller relative error: a reduction from a
factor 2 to 3 compared to a random initialization, and about
10% improvement compared to the TSVD. Hence, in the
remaining of the paper, we will use the nuclear norm initial-
ization for all algorithms in all experiments.

Effectiveness of A-NMD Let us first show the effective-
ness of the adaptive strategy used in A-NMD to accelerate
the naive scheme by Saul described in Section 2. Table 2 re-
ports the total time and iterations needed to reach a relative
error as in (10). We considered averaged values over 5 differ-
ent synthetic matrices, with 5 different random initializations,
post-processed using the nuclear norm algorithm.

Naive A-Naive A-NMD
Size time iter time iter time iter
500 1.84 110 0.78 44 0.57 32
1000 7.21 87 2.85 33 2.28 27
1500 11.4 80 4.40 29 3.71 25
2000 21.2 78 8.19 28 6.80 24

Table 2. Average computational time needed to satisfy con-
dition in (10) on synthetic data with r = 32.

We observe that A-NMD outperforms Naive and A-
Naive: it about 4 times faster than Naive, and 20% faster,
on average, than A-Naive. In the following experiments,
we will therefore only compare the other algorithms with
A-NMD.

Effectiveness of 3B-NMD Table 3 reports the total time
and iterations needed to satisfy condition in (10), for a fixed
rank r = 32, for the EM algorithm of Saul (EM-NMD), its ac-
celerated variant (A-EM), as well as our proposed algorithms
A-NMD and 3B-NMD. Table 4 reports the same quantities for
fixed dimensions m = n = 1000, but with different values of
the rank, r. We observe that A-EM performs better than EM-
NMD, as expected, and hence we will report only the results
for A-EM in the section on real-world data sets. Then, we ob-
serve that A-NMD performs better than A-EM (almost twice
faster in all cases), while 3B-NMD outperforms all other al-
gorithms, being more than 10 times faster than A-EM.

A-NMD 3B-NMD EM-NMD A-EM
Size time iter time iter time iter time iter
500 0.64 33 0.08 23 2.2 101 1.0 43

1000 2.4 27 0.24 24 8.1 78 3.9 36
1500 3.6 24 0.46 24 12.8 70 6.5 35
2000 6.7 25 0.81 24 22.1 66 11.6 34

Table 3. Time needed to satisfy condition in (10) for synthetic
matrices of increasing dimension with r = 32.

A-NMD 3B-NMD EM-NMD A-EM
r time iter time iter time iter time iter
8 2.0 33 0.22 22 10.1 97 4.4 42
16 2.0 24 0.20 24 7.7 77 3.5 36
32 2.2 23 0.22 24 7.4 72 3.6 33
64 2.5 23 0.25 25 8.4 66 3.7 32

Table 4. Computational time needed to satisfy condition in
(10) when approximating synthetic data of fixed size n =
m = 1000 for different values of the rank, r.

5.2. MNIST data set

The experiments in this section are computed on 28 × 28
grayscale images of MNIST handwrittendigits [10], where X
is generated by concatenating vectorized images into a matrix
of size 784×n where n = 500 or n = 50000. To compare the
ReLU-NMD algorithms, we will use the following quantity

err(t) =
∥X −max(0,Θ(t))∥F

∥X∥F
− emin, (11)

where Θ(t) the solution at time t, and emin is the smallest
relative error obtained by all algorithms within the allotted
time. Since err(t) converges to zero for the algorithm that
computed the best solution, we can represent the error in log
scale. Figure 1 (a) displays the results on the MNIST data
set with r = 32 with 500 images (50 images of each digit),
with a timelimit of 10 seconds. Although 3B-NMD converges
initially faster, A-NMD eventually catches up and generates
the best solution. As before, A-EM is outperformed.

Figure 1 (b) displays the results on the MNIST data set
with r = 32 with all the 50000 images, with a timelimit of
20 seconds. In this case, 3B-NMD converges initially faster
and A-NMD does not have time to catch up. In any case,
3B-NMD and A-NMD both perform well, outperforming the
state of the art algorithm A-EM.

Figure 2 compares the algorithms with the baseline,
TSVD, in terms of relative error as the rank increases, and
provides the average time per iteration, for 50000 images of
MNIST and a runtime of 20 seconds. These results confirm
the effectiveness of the 3B-NMD in order to deal with large
data, the cost per iteration being smaller than that of A-NMD
and A-EM. In addition, note that all the ReLU-NMD al-

0 2 4 6 8 10

Time

10
-4

10
-2

10
0

e
rr

(t
)

A-NMD

3B-NMD

A-EM

(a) n = 500.

0 5 10 15 20

Time

10
-2

10
-1

e
rr

(t
)

A-NMD

3B-NMD

A-EM

(b) n = 50000.

Fig. 1. Average value of the error (11) of A-NMD, 3B-
NMD and EM-NMD on small (a) and large (b) portion of
the MNIST data set.

gorithms approximate the dataset with considerably higher
accuracy than the TSVD, as expected.

8 16 32 64 128 256

Rank

0

0.2

0.4

0.6

R
e
la

ti
v
e
 e

rr
o
r

TSVD

A-NMD

3B-NMD

A-EM

(a) Relative error.

8 16 32 64 128 256

Rank

0

1

2

3

4

S
ec

o
n
d
 p

er
 i

te
ra

ti
o
n

A-NMD

3B-NMD

A-EM

(b) Time (seconds).

Fig. 2. Final relative error on m = 50000 images from
MNIST dataset, after 20 seconds and average iteration time
for increasing value of the rank r.

5.3. Compression of sparse NMF basis

Another application of ReLU-NMD, which is new to the best
of our knowledge, is the compression of sparse nonnegative
dictionaries, e.g., the factors generated by NMF. Let us il-
lustrate this on the CBCL data set, used in the seminal pa-
per of Lee and Seung [11]. Each column of the data ma-
trix X ∈ R361×2429 contains a vectorized facial image of
size 19 × 19. The NMF decomposition, X ≈ UV where
U ≥ 0 and V ≥ 0, allows one to extract sparse facial fea-
tures as the columns of U . To do so, we have used the reg-
ularized minimum-volume NMF code from gitlab.com/
ngillis/nmfbook/, and used a rank-100 NMF to obtain
U ∈ R361×100, a nonnegative sparse matrix (in fact, 85%
of the entries are equal to zero); see Figure 4 (a) for an il-
lustration. Further compressing the NMF factor U using the
TSVD does not work as Figure 3 (a) shows, with a relative
error larger than 70%; see also Figure 4 (b). This is because
NMF tends to generate factors U whose singular values are
all large. However, ReLU-NMD does not have this limita-
tion: it can approximate well such sparse full-rank matrices

(e.g., the identity matrix [3]). Denoting Û = max(0,Θ) the
approximation matrix obtained by a ReLU-NMD algorithm,
we first evaluate the relative error as in (10) between U and
Û . Results are displayed for increasing values of the rank in
Figure 3 (a). We also evaluate the error of the compressed
NMF

eNMF = min
V̂≥0

∥X −max(0, Û)V̂ ∥F
∥X∥F

, (12)

see Figure 3 (b). In these experiments, we fix a time limit
of 20 seconds. For such data sets, it appears that A-NMD
reaches the best solution. For example, with r = 20, it is able
to reach almost the same accuracy on the NMF problem as
the original factor of size 100. Figure 4 shows an example of
a rank r = 20 reconstruction of the original rank r = 100
NMF factor.

8 12 16 20 24

Rank

10
-3

10
-2

10
-1

10
0

N
M

D
 r

e
la

ti
v
e
 e

rr
o
r

TSVD

A-NMD

3B-NMD

A-EM

(a) Error on U .

8 12 16 20 24

Rank

0.05

0.1

0.2

0.3

0.4

N
M

F
 r

e
la

ti
v
e
 e

rr
o
r

TSVD

A-NMD

3B-NMD

A-EM

NMF error

(b) Error on X; see (12).

Fig. 3. Compression of a 361-by-100 NMF basis, U , of the
CBCL data set. Image (a) shows the error on the NMF basis
U ≥ 0. Image (b) shows the NMF error after U is replaced
by its approximation; see (12).

6. CONCLUSION

In this paper, we have proposed new algorithms for ReLU-
NMD, one accelerating the naive algorithm by Saul (A-
NMD), the other reparametrizing the low-rank variable to
reduce the computational cost (3B-NMD). We showed their
efficiency compared to the state of the art on synthetic and
real-world data sets.

7. REFERENCES

[1] C. Eckart and G. Young, “The approximation of one ma-
trix by another of lower rank,” Psychometrika, vol. 1,
no. 3, pp. 211–218, 1936.

[2] N. Gillis, Nonnegative Matrix Factorization. SIAM,
Philadelphia, 2020.

[3] L. K. Saul, “A nonlinear matrix decomposition for min-
ing the zeros of sparse data,” SIAM Journal on Mathe-
matics of Data Science, vol. 4, no. 2, pp. 431–463, 2022.

(a) Original r = 100 (b) TSVD r = 20

(c) A-NMD r = 20 (d) 3B-NMD r = 20

Fig. 4. (a) Original factor U of NMF with 100 columns re-
shaped as facial features, and its rank-20 approximations by
(b) TSVD, (c) A-NMD, and (d) 3B-NMD.

[4] L. K. Saul, “A geometrical connection between sparse
and low-rank matrices and its application to manifold
learning,” Trans. Mach. Learn. Res., 2023.

[5] B. T. Polyak, “Some methods of speeding up the con-
vergence of iteration methods,” USSR Comput. Math.
Math. Phys., vol. 4, no. 5, pp. 1–17, 1964.

[6] A. M. S. Ang and N. Gillis, “Accelerating nonneg-
ative matrix factorization algorithms using extrapola-
tion,” Neural Computation, vol. 31, pp. 417–439, 2019.

[7] B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed
minimum-rank solutions of linear matrix equations via
nuclear norm minimization,” SIAM Review, vol. 52,
no. 3, pp. 471–501, 2010.

[8] G. A. Watson, “Characterization of the subdifferential
of some matrix norms,” Linear Algebra and its Applica-
tions, vol. 170, pp. 33–45, 1992.

[9] R. Ge, C. Jin, and Y. Zheng, “No spurious local minima
in nonconvex low rank problems: A unified geometric
analysis,” in Int. Conf. on Machine Learning, 2017.

[10] L. Deng, “The MNIST database of handwritten digit im-
ages for machine learning research,” IEEE Signal Pro-
cessing Magazine, vol. 29, no. 6, pp. 141–142, 2012.

[11] D. D. Lee and H. S. Seung, “Learning the parts of
objects by non-negative matrix factorization,” Nature,
vol. 401, no. 6755, pp. 788–791, 1999.

